

Changing Hudson Project

Name _____

Date _____

Physical Data Sheet-Streams & Rivers

Assess a 200 foot segment of your stream, preferably near where the chemical tests are taking place.

Stream width:

Measure the stream at three different spots and find an average: _____

Water appearance/odor:

clear	clear-brown	milky	greenish
foamy	muddy	multi-color	other (describe)

<u>Stream flow:</u>

<u>Step 1:</u> Stream segment length

Measure out a specific length of your stream (if it is a small stream that is moving very slowly, you will probably want to use a shorter length).

Stream segment length: _____ ft

<u>Step 2:</u> Stream segment width

Find the average width of your stream segment at the top, middle, and bottom end of your segment.

Width top: _____ Width middle: _____ Width bottom: _____ Average: _____ ft

Cary Institute of Ecosystem Studies

<u>Step 3:</u> Stream segment velocity

Using your segment, drop a ping pong ball or a tennis ball (depending on the perceived velocity of your stream-a ping pong ball works better in slower moving water) and record the speed at which the object travels the length of the segment. You should do this at the left, middle, and right side of the stream, and then average your measurements.

Left side (sec)	Middle (sec)	Right side (sec)	Average
Average of all three			

<u>Step 4:</u> Stream depth. Stretch a tape measure across the stream at the mid-point of your stream segment. At 1 foot intervals across the stream, measure the depth (in inches) and record it in the table below.

Distance (ft)	Depth	Distance	Depth
(f†)	(in)	Distance (ft)	(in)
0	0	6	
1		7	
2		8	
3		9	
4		10	
5		11	

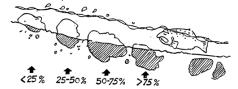
Sum of depths: ______in / number of samples taken * 1ft / 12 in= ______ft -(Average depth of stream)

<u>Step 5:</u> Flow calculation

Now that you have all your measurements, simply plug in the numbers in the equation:

[_____ ft (length) x _____ ft (width) x _____ ft (depth)] ÷ _____ (time secs) = _____ cubic feet/sec

Changing Hudson Project


<u>Habitat:</u>

	Many	Some	Few/none
Riffles (fast areas, <2' deep)			
Runs (fast areas, >2' deep)			
Pools (slow areas, >2' deep)			
Glides (slow areas, <2'deep)			
Shelter for fish (logs, stumps etc)			
Patches of aquatic plants			

Substrate size: Rank the substrate sizes from most common (1) to least common (6)

Silt/clay/sand	Sand (up to 0.1")	Gravel (0.1-2")	Cobbles (2-10")	Boulders (>10")	Bedrock (solid rock covering bottom)

<u>Cobble Embeddedness</u>: Pick up several cobbles (if present) to estimate the average embeddedness of your site.

Average embeddedness: _____%

Image from Hudson Basin River Watch Guidance Document

Changing Hudson Project

Natural Vegetation: extends beyond the banks for:	< 6 yar	ds 6-12 ya	rds
(if the 2 banks are different, evaluate both and average	e them)	12-36 yards	>35 yards

Stream banks:

	In no or few areas	In some areas	In many areas
Covered with vegetation			
Eroding			
Mowed			
Artificially protected			

Human Impacts and Land Use:

farms	industry
recreation	housing
garbage	logging
mining	roads
	recreation garbage

Other: _____

For more in-depth survey guidelines, see Behar, S. and M. Cheo. 2004. "Hudson Basin River Watch Guidance Document."