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Abstract
1.	 Climate change and natural disturbances are catalysing forest transitions to 

different vegetation types, but whether these new communities are resilient al-
ternate states that will persist for decades to centuries is not known. Here, we test 
how changing climate, disturbance and biotic interactions shape the long-term 
fate of a deciduous broadleaf forest type that replaces black spruce after severe 
wildfires in interior Alaska, USA.

2.	 We simulated postfire deciduous forest that replaced black spruce after se-
vere fires in 2004 for tens to hundreds of years under different climate sce-
narios (contemporary, mid 21st century, late 21st century), fire return intervals 
(11–250 years), distances to seed source (50–1,000 m) and browsing intensities 
(background, moderate, chronic). We identified combinations of conditions where 
deciduous forest remained the dominant vegetation type and combinations where 
it returned to black spruce forest, transitioned to mixed forest (where deciduous 
species and black spruce co-dominate) or converted to nonforest.

3.	 Deciduous forest persisted in 86% of simulations and was most resilient if fire re-
turn intervals were short (≤50 years). When transitions to another vegetation type 
occurred, mixed forest was most common, particularly when fire return intervals 
were long (>50 years) and the nearest seed source was 500 m or farther. Moderate 
and chronic browsing also reduced deciduous sapling growth and survival, help-
ing black spruce compete if fire return intervals were long and seed source was 
distant. Dry soils occasionally caused conversion to nonforest following short-
interval fire when simulations were forced with a late 21st-century climate sce-
nario that projects warming and increased vapor pressure deficit. Return to black 
spruce forest almost never occurred.

4.	 Synthesis. Conversion from black spruce to deciduous forest is already underway 
at regional scales in interior Alaska, and similar transitions have been widely ob-
served throughout the North American boreal biome. We show that this boreal 
deciduous forest type is likely a resilient alternate state that will persist through 
the 21st century, which is important, because future vegetation outcomes will 
shape biophysical feedbacks to regional climate and influence subsequent distur-
bance regimes.
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1  | INTRODUC TION

Changing climate and natural disturbances are catalysing forest con-
version to different vegetation types (e.g. new tree species assem-
blages, grass/shrublands; Bowman, Murphy, Neyland, Williamson, & 
Prior, 2014; Donato, Harvey, & Turner, 2016; Johnstone, Hollingsworth, 
Chapin, & Mack,  2010; Odion, Moritz, & DellaSala,  2010; Tiribelli, 
Kitzberger, & Morales,  2018). Because vegetation structure and 
composition shapes biogeochemical cycling (Sitch et  al.,  2008), cli-
mate regulation (Bonan, 2008; Swann et al., 2018; Thom, Rammer, & 
Seidl, 2017) and ecosystem service provision (Seidl, Spies, Peterson, 
Stephens, & Hicke,  2016; Turner, Donato, & Romme,  2013), deter-
mining the long-term fate of these emerging communities is essential 
for forecasting 21st-century earth system function. However, succes-
sion in terrestrial ecosystems unfolds slowly, and it remains poorly 
resolved whether new vegetation types are transient or will prove 
to be resilient alternate states that persist for decades to centuries 
(sensu; Beisner, Haydon, & Cuddington, 2003; Johnstone et al., 2016; 
May, 1977).

Resilience is the capacity of a system to absorb perturbation 
while retaining function, structure, and thus, identity (Walker 
et al., 2006). The long-term resilience of new vegetation types fol-
lowing forest conversion will depend on reinforcing and destabiliz-
ing feedbacks (Connell & Sousa, 1983; Petraities & Latham, 1999; 
Ratajczak et  al.,  2018). However, feedbacks often develop over 
years to decades (Hughes, Linares, Dakos, van de Leemput, & van 
Nes,  2013; Johnstone et  al.,  2016), and 20th-century forest con-
version following disturbance was comparatively rare (e.g. Turner, 
Braziunas, Hansen, & Harvey, 2019; Wood & Bowman, 2012). Thus, 
we lack observations of how feedbacks shape long-term outcomes. 
Further, the magnitude of projected 21st-century climate change 
means that historical observations may be a poor guide for pre-
dicting vegetation responses to future climate (Keane et al., 2018; 
Seidl, 2017). The rarity of 20th-century forest conversion following 
disturbance and the prospect of no-analog future climate both limit 
the utility of empirical approaches for determining whether emerg-
ing vegetation types will prove resilient.

Process-based simulation models offer a promising path for-
ward. They describe cause and effect relationships between system 
variables (Foster et al.,  2019; Gustafson,  2013; Miller, Thompson, 
Tepley, & Anderson-Teixeira,  2018; Serra-Diaz et  al.,  2018; Tepley 
et al., 2018), making them useful for tracking feedbacks as ecosys-
tems reorganize and for identifying the underpinning abiotic and 
biotic drivers (Dietze,  2017; Grimm & Berger,  2016; Seidl,  2017). 
Process-based models are also well suited to evaluate forest re-
sponses to no-analog future climate conditions because they are 
based on first principles rather than statistical relationships derived 
from past observations (Keane et al., 2018; Seidl et al., 2011).

The boreal forest of interior Alaska is an excellent system from 
which to gain generalizable insights regarding the long-term fate 
of new vegetation types following forest conversion (Johnstone 
et  al.,  2016). For much of the Holocene, interior Alaskan forests 
were dominated by black spruce Picea mariana, interspersed with 
pockets of deciduous broadleaf (hereafter; deciduous) trembling 
aspen Populus tremuloides and Alaskan birch Betula neoalaskana 
(Calef, McGuire, Epstein, Rupp, & Shugart, 2005; Higuera, Brubaker, 
Anderson, Hu, & Brown,  2009). Wildfire is the dominant distur-
bance, and black spruce trees are well adapted to the historical fire 
regime (Higuera et al., 2009; Johnstone, Hollingsworth, et al., 2010). 
However, temperature in interior Alaska has warmed at nearly twice 
the global average, increasing the frequency and size of severe fires 
(Chapin et  al.,  2010; Hoecker & Higuera,  2019; Kelly et  al.,  2013; 
Wolken et  al.,  2011). Intensifying fire activity now favours post-
fire establishment and dominance of aspen and birch in stands that 
were previously comprised of black spruce (Johnstone et al., 2016; 
Johnstone, Hollingsworth, et al., 2010). Regional transitions from 
black spruce to deciduous forest after fire are already underway 
(Beck et al., 2011; Mann, Rupp, Olson, & Duffy, 2012).

The fate of postfire deciduous forest once dominated by 
black spruce is not known (though, see Alexander & Mack,  2017; 
Kurkowski, Mann, Rupp, & Verbyla, 2008). However, climate, distur-
bance and biotic interactions may all be important for determining 
whether deciduous forest persists, transitions to forest of mixed 
species composition, returns to black spruce dominance or converts 
to nonforest. Tree growth is already limited by soil moisture during 
hot-dry years (Trugman, Medvigy, Anderegg, & Pacala,  2018), and 
future water balance remains uncertain because general circulation 
models (GCMs) vary widely in precipitation and vapor pressure defi-
cit (VPD) projections. Deciduous forest is also less flammable than 
spruce (Higuera et  al.,  2009). Yet, it can burn when weather is ex-
treme (Barrett et al., 2016), and short-interval fires might reinforce 
the resilience of deciduous forest because aspen and birch resprout 
asexually after burning (Burns & Honkala, 1990; Johnstone, 2005). 
Further, browsing in the boreal forest occurs at rates sufficient to 
alter global carbon cycling (Schmitz et al., 2014, 2018). Moose Alces 
alces heavily browse deciduous saplings (Brown et al., 2018; Seaton 
et  al.,  2011), while snowshoe hares Lepus americanus target under-
storey black spruce (Olnes, Kielland, Genet, & Ruess, 2019), both of 
which, might influence successional trajectories following fire.

We conducted a simulation experiment with an individual-based 
forest-process model, iLand, to ask: How do changing climate, dis-
turbance characteristics and biotic interactions shape the resilience of 
postfire deciduous forest previously dominated by black spruce? We 
hypothesized (A) that deciduous forest would be resilient under 
contemporary climate conditions and wetter future climate scenar-
ios, when fire return intervals (FRIs) were short, and when postfire 
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seed source was distant or browsing intensity on aspen and birch 
was low (Figure 1). We then asked: When resilience of deciduous for-
est is exceeded, under what conditions do transitions to mixed forest or 
black spruce forest occur, rather than transitions to nonforest? We hy-
pothesized (B) that transitions to mixed forest or black spruce forest 
would occur under contemporary climate or wetter future climate 
scenarios, but only when FRIs were long, or postfire seed source 
was close and deciduous trees were heavily browsed. Finally, we hy-
pothesized (C) that transitions to nonforest would only occur under 
warmer-drier future climate scenarios.

2  | MATERIAL S AND METHODS

2.1 | Study area

The Alaskan boreal forest covers a massive area (~450,000  km2) 
south of the Brooks mountain range and north of the Alaska range 
(Figure  S1). Climate is continental (January mean minimum tem-
perature: −27°C, July mean maximum temperature: 23°C, mean 
annual precipitation: 270 mm; http://clima​te.gi.alaska.edu/Clima​te/
Normals). Roughly half of the Alaskan boreal forest is underlain by 
near-surface permafrost (≤1 m deep; Pastick et al., 2015), concen-
trated in cooler valley bottoms and north-facing slopes (Hinzman, 
Viereck, & Adams, 2006). Throughout much of the Holocene, black 
spruce has dominated the Alaskan boreal forest, and is widespread 
in areas underlain by permafrost (Chapin, Hollingsworth, Murray, 
Viereck, & Walker, 2006). Deciduous forest is interspersed in 
warmer uplands and on south-facing slopes. Though not included in 
this study, white spruce (Picea glauca) can be found in well-drained 
uplands and flood plains (Chapin et al., 2006).

Slow decomposition rates in black spruce forest cause thick lay-
ers of surface organic material to accumulate that serve as fuel for 
wildfires (Boby, Schuur, Mack, Verbyla, & Johnstone, 2010; Kasischke 
& Johnstone, 2005). Historically, black spruce forest burned in large 

fires every 80–250 years (Higuera et al., 2009; Hu et al., 2006; Lynch, 
Clark, Bigelow, Edwards, & Finney, 2002). Fires were stand replacing 
(killing the trees), but often, the soil organic layer was not completely 
consumed (Kasischke & Johnstone,  2005). This ensured postfire 
self-replacement by black spruce (Johnstone & Kasischke,  2005). 
Black spruce are the only tree species in the Alaskan boreal forest 
with seeds that have sufficient carbohydrate reserves to support 
root growth through the organic layer into mineral soil. Further, black 
spruce trees produce huge seed crops in semi-serotinous cones (that 
remain partially closed until heated by fire; Johnstone et al., 2009). 
However, black spruce trees do not disperse seeds long distances; 
most fall within 80  m of the source tree (Burns & Honkala,  1990). 
Thus, the in situ seed supply is a critical determinant of postfire re-
generation success (Johnstone et al., 2009).

Conversely, aspen and birch produce small light seeds that 
do not germinate well on thick surface organic layers (Johnstone, 
Chapin, et al., 2010) but can travel in the wind for kilometres from 
the source tree (Burns & Honkala, 1990). Both species also resprout 
asexually after fire. Warming, combined with increased lightning fre-
quency, is causing more frequent and larger fires (Sanford, Wang, & 
Kenward,  2015; Veraverbeke et  al.,  2017) that burn deep into the 
surface organic layer (Johnstone et  al.,  2016; Walker et  al.,  2019). 
Where postfire surface organic layers are thin or mineral soil has 
been exposed, faster growing aspen and birch can establish, outcom-
pete spruce and dominate the overstorey (Johnstone, Hollingsworth, 
et al., 2010). Larger and more frequent fires also may favour decidu-
ous tree seedling establishment due to differences in effective dis-
persal distance and the ability of aspen and birch to resprout.

2.2 | Model overview

To determine how climate, disturbance and biotic interactions will 
shape the future of postfire deciduous forest in Alaska, we conducted 
a simulation experiment with the individual-based forest-process 

F I G U R E  1   Hypothesis A: The 
combinations of climate, disturbance 
characteristics and biotic interactions 
under which deciduous forest that 
replaces spruce after severe wildfires will 
persist in Alaska, USA. Hypotheses B and C:  
The combinations of conditions under 
which deciduous forest may transition 
to mixed forest or return to black spruce 
forest versus converting to nonforest.  
FRI stands for fire return interval

Deciduous 
forest

Mixed forest/
black-spruce forest Nonforest

Deciduous 
forest

Contemporary climate or
wetter future climate

Drier future climate

Short FRI Long FRI

Long distance 
to seed source

Short distance
to seed source

Background
deciduous
browsing

Chronic
deciduous
browsing

Climate 

Disturbance
characteristics

Biotic
interactions 

Hyp. A

Hyp. B

Hyp. C
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model, iLand (Seidl, Rammer, Scheller, & Spies, 2012; online docu-
mentation: http://iland.boku.ac.at). iLand simulates individual trees 
in a hierarchical framework where broader-scale forest dynam-
ics emerge from interactions among individuals (Seidl, Rammer, 
et al., 2012). Tree growth, mortality and competition are modelled 
as functions of canopy light interception, radiation, temperature, 
soil moisture and nutrient limitation. Climate and soils are modelled 
as spatially homogeneous within a stand (1 ha). However, individual 
trees determine light availability at a 2 m × 2 m horizontal resolution 
within each stand.

The model explicitly represents seed dispersal using a two-part 
exponential equation that accounts for both short (e.g. wind-based) 
and long distance (e.g. animal-based) dispersal (Seidl, Rammer, et al., 
2012). Dispersal probability declines with distance from seed source. 
Effects of climate on seed germination and seedling establishment 
are also accounted for (Seidl, Spies, et al., 2012). The model simu-
lates serotinous seed dispersal (Hansen, Braziunas, Rammer, Seidl, 
& Turner, 2018; Hansen, Abendroth, Rammer, Seidl, & Turner, 2020) 
and asexual resprouting. It also represents natural disturbances, in-
cluding wildfire (Hansen, Abendroth, et al., 2020; Seidl, Rammer, & 
Spies, 2014). In the model, a user-defined species-specific probabil-
ity of animal browsing can be applied. This determines what percent-
age of seedlings and saplings are browsed each year. If a seedling 
or sapling is browsed, annual biomass production does not occur 
(i.e. stems do not grow and leaves are not produced). This causes 
stress to build, as carbon reserves are reduced, which may eventually 
kill the simulated seedling or sapling.

iLand can simulate forest landscapes or independent forest 
stands in parallel where neighbouring stands do not influence one 
another. When run in this mode, iLand simulates each stand as 
if they are ‘wrapped’ where trees on one side of the stand influ-
ence trees on the other side, eliminating edge effects. The model 
has been well tested in landscape and stand modes and used ex-
tensively in the western United States (Braziunas, Hansen, Seidl, 
Rammer, & Turner, 2018; Hansen, Abendroth, et al., 2020; Hansen 
et  al.,  2018; Seidl, Rammer, et al., 2012; Seidl et  al.,  2014; Seidl, 
Spies, et al., 2012) and Europe (Albrich, Rammer, & Seidl,  2020; 
Albrich, Rammer, Thom, & Seidl,  2018; Silva Pedro, Rammer, & 
Seidl, 2015; Thom, Rammer, Dirnböck, et al., 2017). We used stand 
mode in this application.

2.3 | Model parameterization and benchmarking

We parameterized iLand for black spruce, trembling aspen and 
Alaskan birch. Parameters were identified through extensive lit-
erature review (Appendix S1). We benchmarked the model with 
long-term field data using a pattern-oriented approach (i.e. Grimm 
et al., 2005). First, we evaluated whether iLand could simulate tra-
jectories of forest structure in monospecific stands of each spe-
cies (Appendix S2). We then evaluated postfire tree regeneration in 
the model as a function of distance to seed source (Appendix S3).  
Finally, we tested whether the model could simulate historical 

successional trajectories of forest structure and composition when 
species were mixed (Appendix S4). Modest parameter calibration 
was necessary based on benchmarking exercises (Appendix S1), 
but the model generally agreed well with independent field obser-
vations (Malone, Liang, & Packee,  2009; Ruess, Hollingsworth, & 
Johnstone, 2018).

2.4 | Initial forest structure and topoedaphic  
conditions

We initialized iLand based on field surveys of forest stands that 
burned across much of interior Alaska during the large fire season of 
2004 (Johnstone et al., 2020; Johnstone, Hollingsworth, et al., 2010; 
Figure S1). Black spruce was the dominant tree species in stands be-
fore burning in 2004, accounting for 90 ± 3.8% (mean ± standard 
error; SE) of prefire density. Stands then transitioned to deciduous 
dominance after the 2004 fires. Postfire species composition was 
81  ±  2% deciduous seedlings and 19  ±  2% black spruce seedlings 
when sampled in 2017.

For each stand in the experiment, we extracted geographically 
corresponding soil characteristics including percent sand, silt, clay 
and effective soil depth, derived from the Alaska STATSGO data-
base (NRCS, 2019). Relative soil fertility (expressed as plant avail-
able nitrogen; Braziunas et al., 2018) was set at 45 kg ha−1 year−1, 
loosely based on field measurements of plant available nitrogen in 
mixed and deciduous forest of interior Alaska (Melvin et al., 2015). 
We kept relative fertility spatially constant (no variation across 
stands in the experiment) because there is a lack of reliable grid-
ded soil nitrogen data for interior Alaska. Remote sensing indi-
cated that most of the stands (~75%) are currently not underlain by 
near-surface permafrost (Pastick et al., 2015). Further, the extent 
of permafrost is expected to markedly decrease in coming decades 
(Schuur & Mack,  2018). Thus, we assumed permafrost was not 
present in simulations.

The model was initialized with tree species composition and 
stem densities that matched field measurements in 2017. Seedling 
heights were not available from most of the field surveys. Thus, 
we fit species-specific distributions (gamma for aspen and spruce, 
Weibull for birch) to seedling-height data collected in a subset of 
the sampled fires (Conway & Johnstone, 2017) and assigned initial 
heights to simulated seedlings and saplings by randomly drawing 
from these distributions. Because stand density, species composi-
tion and tree heights came from different field surveys conducted 
in different years, we set initial tree ages to 11 years, which also 
helps account for any infilling of seedlings in the stands since 
2004.

2.5 | Simulation experiment

We conducted a simulation experiment to evaluate how climate, 
fire return interval, postfire distance to seed source and browsing 

http://iland.boku.ac.at
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intensity affect the resilience of deciduous forest (Table  1). Stands 
were simulated with contemporary and future climate forcing until 
they were scheduled to burn in a second severe fire. After the second 
fire, simulations continued for another 50 years as if the nearest live 
spruce and deciduous seed sources were different distances away. 
The intensity of browsing on spruce and deciduous seedlings and sap-
lings was also varied.

We represented effects of current and future climate on sim-
ulated stands by forcing the model under three climate periods: 
contemporary (1971–2000), mid 21st century (2031–2060) and late 
21st century (2071–2100). iLand ingests daily climate (minimum and 
maximum temperature, sum of precipitation, sum of shortwave ra-
diation and mean vapour pressure deficit). For each climate period, 
we used daily meteorological data from three GCMs that represent 
historical climate well in Alaska (Walsh et  al.,  2018) and span the 
range of projected 21st-century conditions (Figure  2). The GCMs 
were the MRI-CGCM3, IPSL-CM5A-LR and CCSM4 GCMs (Dufresne 
et al., 2013; Gent et al., 2011; Yukimoto et al., 2012). Runs of each 
GCM were carried out as part of the fifth phase of the Coupled 
Model Intercomparison Project (Taylor, Stouffer, & Meehl,  2012). 
Future GCM runs were forced with the RCP 8.5 emissions scenario 
(van Vuuren et al., 2011). Modelled daily meteorological grids were 
statistically downscaled to a 1-km spatial resolution using quantile 
matching (Appendix S5).

Each stand was simulated until scheduled to burn at 11, 50, 125 
and 250 years after the initial 2004 fire. This spans the observed 
range of FRIs from very short-interval fires to long FRIs observed 
during the Holocene (Higuera et al., 2009). Fire ignition and spread 
were not simulated explicitly. Instead, we represented effects of 
stand-replacing fires by prescribing 100% mortality to the prefire 
trees, saplings and seedlings in each burned stand.

The stands used to initialize the experiment each burned at 
high severity in the 2004 fires and 76  ±  3.6% of the surface or-
ganic layer was consumed on average. Surface organic material 
accumulates slowly in deciduous and mixed forest compared to 

monospecific black spruce stands because litter quality is higher, 
decomposition rates are faster and moss cannot establish as well 
(Melvin et  al.,  2015). Thus, we did not explicitly represent sur-
face organic layer accumulation during simulations. Instead, we 
assumed that simulated fires completely consumed any surface 
organic layer that would have accumulated since the initial 2004 
fires.

Following fire, the probability of deciduous and black spruce 
seeds arriving in each burned stand differed as if the nearest un-
burned forest was 50, 500 or 1,000 m away, based on species-specific 
dispersal kernels. Treatments were chosen to reflect distances to 
live seed source commonly measured in the field surveys used to 
initialize the simulation experiment (Johnstone, Hollingsworth, et al., 
2010). Black spruce trees that burned also served as an in situ seed 
source because of their semi-serotinous cones. Deciduous trees that 
burned could resprout asexually.

Species parameters that determine seedling establishment and 
sapling growth are derived from field measurements, where at 
least some individuals have been browsed. Thus, we assumed that 
seedlings and saplings in the model are always influenced by a low 
background probability of browsing, which was set at 20% for de-
ciduous individuals <2 m tall and 1.5% for black spruce <2 m tall, 
based on field surveys (Lord & Kielland, 2015; Olnes et al., 2019). 
To evaluate effects of more intense browsing, we compared stands 
with background levels of browsing to stands that experienced 
medium browsing intensities (45% and 15% of deciduous and 
black spruce individuals <2 m tall) and chronic browsing (60% and 

TA B L E  1   Experimental factors and treatment levels

Factor Levels

Climate period Contemporary (1971–2000)
Mid 21st-century (2031–2060)
Late 21st-century (2071–2100)

GCM MRI-CGCM3
IPSL-CM5A-LR
CCSM4

Fire return interval 11, 50, 125, 250 years postfire

Postfire distance to  
seed source

50, 500 1,000 m from seed 
source

Deciduous browsing  
intensity

Background (20% probability)
Moderate (45% probability)
Chronic (60% probability)

Black spruce browsing  
intensity

Background (1.5% probability)
Moderate (15% probability)
Chronic (25% probability)

F I G U R E  2   (a) April–September mean daily maximum 
temperature (Tmax), (b) April–September mean daily minimum 
temperature (Tmin), (c) annual total precipitation, and (d) April–
September mean daily vapour pressure deficit (VPD) for simulated 
stands, by climate period and GCM. All GCMs were forced with 
the RCP 8.5 emissions scenario. Contemp., contemporary; GCM, 
general circulation model
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25% of deciduous and black spruce individuals <2  m tall; Lord & 
Kielland, 2015; Olnes et al., 2019).

Each of the 31 stands in the experiment were run with all combi-
nations of climate period (three levels), GCM (three levels), FRI (four 
levels), distance to seed source (three levels), deciduous browsing 
intensity (three levels) and black spruce browsing intensity (three 
levels). Because we did not want the order of the climate records 
to influence results, we also ran five replicates of each stand and 
combination of experimental treatments where the temporal order 
of the climate forcing was rearranged with replacement. This yielded 
a total of 150,660 simulations.

2.6 | Model outputs and data analysis

We quantified the mean percentage of replicate stands that re-
mained deciduous forest 50 years after simulated fire, and the mean 
percentage that transitioned to mixed forest (co-dominance of de-
ciduous species and spruce), black spruce forest or nonforest using 
importance values (IV). IV is a measure of stand dominance that con-
siders the relative proportions of species or plant functional type 
density and basal area. Values range from zero to two. Larger values 
indicate the species or plant functional type is more dominant in the 
stand. Based on all trees with a DBH  ≥  2.5  cm, stands were con-
sidered deciduous forest if the deciduous IV was above 1.5. Stands 
were considered mixed forest when deciduous IV ranged from 0.5 
to 1.5, and they were considered black spruce forest if deciduous 
IV was below 0.5. Stands were classified as nonforest if fewer than 
50 stems/ha remained (Hansen et  al.,  2018). The percentage of 
stands ± the SE among replicates is presented in the text.

We used random forest classification to quantify how the 
dominant vegetation type (deciduous forest, mixed forest, black 
spruce forest, nonforest) at the end of simulations differed across 
combinations of the experimental treatments and varied by rep-
licate. Random forest is a powerful machine learning algorithm 
for analysing complex datasets that do not meet traditional 
statistical assumptions. It is useful for analysing simulation ex-
periments where large sample sizes can artificially inflate statis-
tical significance derived from parametric approaches (Lucash, 
Ruckert, Nicholas, Scheller, & Smithwick,  2019). In random for-
est, a user-defined number of classification trees (in this study, 
n = 500) are fit to bootstrapped subsamples of the dataset (Cutler 
et  al.,  2007). Classification trees partition observations into ho-
mogenous groups (in this analysis, final vegetation type) based on 
explanatory variables. At each node, only a few randomly selected 
variables are available for observation partitioning (in this study, 
n = 2). For each classification tree, observations from the dataset 
that are not included among the bootstrapped samples are used 
to evaluate model accuracy. Then, explanatory variables are ran-
domly permuted, and the difference in classification accuracies 
between the two models provides a normalized metric of variable 
importance (mean decrease in accuracy), reported as a percentage 
(Cutler et al., 2007).

3  | RESULTS

Stand densities (trees with DBH ≥ 2.5 cm) ranged widely (3–8,251 
stems/ha, mean = 1,370 stems/ha) 50 years after simulated fire. 
Deciduous tree densities were between 3 and 7,198 stems/ha 
(mean = 1,122 stems/ha), and black spruce densities varied from 
0 to 7,925 stems/ha (mean  =  248 stems/ha). Simulated stand 
composition and densities aligned well with independent field ob-
servations collected across interior Alaska (Malone et al., 2009; 
Ruess et al.,  2018; see Appendix S2 for descriptions of these 
datasets).

Most stands (86  ±  0.04%) remained deciduous forest across 
all combinations of GCMs, climate periods, FRIs, distances to seed 
source and browsing intensities. When transitions to another veg-
etation type occurred, mixed forest was the most likely outcome 
(13.7 ± 0.05% of stands), and was 85 times more common than re-
turn to black spruce forest or conversion to nonforest. Transition 
to nonforest was rare (0.32 ± 0.015% of stands) and stands almost 
never returned to black spruce forest (0.001 ± 0.0008%).

3.1 | Determinants of deciduous forest resilience

FRI, distance to seed source and deciduous browsing intensity 
jointly determined whether deciduous stands were resilient or 
transitioned to another vegetation type 50 years after simulated 
fire (Figure  3a). Nearly 1.3 times more stands remained decidu-
ous forest when FRIs were short (11 or 50 years; 97 ± 0.04% of 
stands) versus long (125 or 250  years; 75  ±  0.16% of stands; 
Figure  3b). However, when FRIs were 125 or 250  years, stands 
were most likely to remain deciduous forest if seed source was 
close and deciduous browsing intensity was low (Figure  3c). For 
instance, when FRIs were long, nearly three times more stands 
remained deciduous forest if the nearest seed source was 50  m 
away with background levels of deciduous browsing (99.9 ± 0.04% 
of stands), compared to stands where seed source was 1,000 m 
away and deciduous browsing intensity was chronic (34.4 ± 0.4% 
of stands). Climate period, GCM, spruce browse intensity and rep-
licate had little to no influence on whether deciduous forest per-
sisted (Figure 3a).

3.2 | Determinants of transitions to other 
vegetation types

For the simulated stands that did transition from deciduous forest 
to another vegetation type, FRI most strongly determined whether 
mixed forest or nonforest was most likely (Figure  4a). Nearly two 
and a half times more stands transitioned to mixed forest, rather 
than to nonforest, when FRIs were 125 or 250 years (99.6 ± 0.05% 
of stands) versus when FRIs were 11 or 50 years (41.4 ± 0.35% of 
stands; Figure 4b). Climate period and GCM also had small effects on 
whether stands transitioned to mixed forest or nonforest (Figure 4a). 
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F I G U R E  3   (a) Variable importance 
plot of experimental treatments used in 
random forest classification to predict 
which simulated stands were most likely 
to remain deciduous forest 50 years 
after simulated stand-replacing fire. 
Values show the decrease in classification 
accuracy when variables are permuted 
in random forest classification. Larger 
values indicate the variable is more 
important to the classification. (b) Percent 
of stands that remained deciduous forest 
or transitioned to another vegetation 
type (i.e. mixed forest, black spruce forest 
or nonforest) 50 years after simulated 
stand-replacing fire as a function of 
fire return interval. (c) For the subset 
of simulated stands that burned in long 
fire return intervals (125 or 250 years; 
n = 75,330), percent of stands that 
remained deciduous forest or transitioned 
to another vegetation type as a function 
of distance to seed source and deciduous 
browsing intensity. In plots (b) and 
(c), standard errors across simulation 
replicates were too small to visualize
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F I G U R E  4   (a) Variable importance 
plot of experimental treatments used in 
random forest classification to predict 
whether stands converted to mixed forest 
or nonforest for the subset (n = 21,154) of 
simulated stands that transitioned from 
deciduous forest to an another vegetation 
type 50 years after simulated stand-
replacing fire. Values show the decrease in 
classification accuracy when variables are 
permuted in random forest classification. 
Larger values suggest the variable is more 
important to the classification.  
(b) For a subset of simulated stands that 
transitioned to another vegetation type 
(n = 21,154), percent of stands classified 
as mixed forest or nonforest as a function 
of fire return interval. (c) For a subset 
of simulated stands that transitioned to 
another vegetation type and burned in 
short fire return intervals (11 or 50 years; 
n = 10,557), percent of stands that 
transitioned to mixed forest or nonforest 
as a function of GCM and climate period. 
In plots (b) and (c), standard errors across 
simulation replicates were too small to 
visualize. Contemp., contemporary;  
GCM, general circulation model
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When FRIs were short, transitions to nonforest were more likely to 
occur in the late 21st-century climate period (35 ± 2.5% of stands) 
than the contemporary period (from 23  ±  2.5%) under the IPSL-
CM5A-LR GCM (warmest with highest VPD; Figure  2; Figure  4c). 
Conversely, if simulations were forced with climate from the MRI-
CGCM3 GCM (largest precipitation increases with lowest VPD; 
Figure  2) transitions to nonforest were less likely to occur under 
late 21st-century climate compared with the contemporary period 
(Figure 4c).

Whether transitions to nonforest after short-interval fire were 
more or less likely in the late 21st century depended on differ-
ences in simulated soil moisture between GCMs. Soils in the late 
21st-century climate period were approximately one percentage 
point drier than in the contemporary period when simulations 
were forced by the IPSL-CM5-LR GCM. In contrast, soil moisture 
increased from 13.4  ±  0.02% during the contemporary period to 
15.9  ±  0.002% during the late 21st-century period with the MRI-
CGCM3 GCM. Deciduous and spruce browsing intensity, replicate 
and distance to seed source had little influence on whether stands 
transitioned to mixed forest or nonforest (Figure 4a).

4  | DISCUSSION

Changing climate and disturbances are catalysing forest transitions 
to new vegetation types in many biomes (Bowman et  al.,  2014; 
Enright, Fontaine, Bowman, Bradstock, & Williams, 2015; Johnstone 
et al., 2016; van Nes et al., 2018; Turetsky et al., 2017). Determining 
the long-term fate of these vegetation types is essential for under-
standing how earth system function will change during this century. 
Across interior Alaska, more frequent and larger severe fires have  
initiated widespread conversion from black spruce to deciduous for-
est (Johnstone, Chapin, et al., 2010; Mann et al., 2012). Our simula-
tions indicate that this forest type is likely a resilient alternate state 
that could persist for decades to centuries under a wide range of 
plausible future conditions. iLand does not yet represent permafrost, 
an important process in lowland areas of interior Alaska. Even now, 
however, near-surface permafrost underlies only approximately half 
of the Alaskan boreal forest, and its spatial extent is expected to 
decline over the next few decades (Pastick et al., 2015). Our findings 
resolve critical uncertainties regarding postfire successional trajec-
tories in vast areas of boreal forest not underlain by permafrost. This 
is important, as future vegetation outcomes will shape biophysical 
feedbacks to regional climate and influence subsequent disturbance 
regimes (Chapin et al., 2000).

4.1 | The fate of an alternate vegetation type

Deciduous forest that replaced spruce after severe fires in 2004 
often persisted for decades to centuries in our simulations. 
Consistent with hypotheses (Figure  1), short FRIs reinforced the 
deciduous state. Most stands (97%) remained deciduous forest 

when FRIs were 11 or 50 years. Once established from seed, trem-
bling aspen and Alaskan birch resprout asexually following severe 
fire, whereas, black spruce are obligate re-seeders (Johnstone & 
Chapin,  2006). Thus, when FRIs are shorter than ~75  years, black 
spruce seedling establishment is reduced because prefire trees 
have not produced sufficient cones to ensure self-replacement 
(Brown & Johnstone, 2012; Johnstone, Hollingsworth, et al., 2010; 
Whitman, Parisien, Thompson, & Flannigan, 2019). However, even 
if spruce seed is present, deciduous trees may capitalize on below-
ground carbohydrate reserves to fuel prolific resprouting and rapid 
stem growth, providing a competitive advantage (Johnstone, 2005; 
Pausas et  al.,  2016). In this study we did not consider CO2 fertili-
zation in future climate scenarios, which could alter competitive 
dynamics between deciduous species and black spruce. However, 
effects of increasing atmospheric CO2 concentrations on tree regen-
eration and interspecific competition remain uncertain (D'Arrigo & 
Jacoby, 1993; Dusenge, Duarte, & Way, 2019; Girardin et al., 2016; 
Johnson, McCulloh, & Reinhard, 2011), and thus, problematic to in-
corporate into models.

This study highlights how resprouting could be a valuable func-
tional trait in forests where climate change causes disturbance re-
gimes to intensify (e.g. subalpine forests of Yellowstone National 
Park; Hansen, Romme, Ba, & Turner,  2016). Yet, the influence of 
resprouting on forest resilience is context dependent. In mixed eu-
calypt forests of Australia, for instance, extremely short FRIs now 
occur that exceed the resilience of even resprouting tree species 
(Fairman, Bennett, & Nitschke, 2019). Understanding how postfire 
regeneration strategies, like resprouting, may interact with expected 
changes in climate and disturbance regimes will be important for 
predicting 21st-century successional trajectories in forests globally 
(Turner, 2010).

Under long FRIs, deciduous forest persisted if postfire seed 
source was close. When deciduous seed source was distant, how-
ever, some stands transitioned to mixed forest (spruce and deciduous 
trees co-dominated). By 125–250 years, black spruce trees have de-
veloped large aerial seedbanks held in semi-serotinous cones (Viglas, 
Brown, & Johnstone, 2013). Once heated by fire, seeds are released, 
which decouples postfire spruce seedling density from distance to 
unburned forest (Johnstone et  al.,  2009). In contrast, aspen and 
birch are short lived; mature stems start to senesce after 125 years 
in interior Alaska (Alexander & Mack, 2017; Viereck, Dyrness, Van 
Cleve, & Foote, 1983). Both species also resprout with less vigour 
as they age (Burns & Honkala,  1990; Johnstone,  2005), which in-
creases the importance of postfire distance to unburned deciduous 
seed source under long FRIs. It is worth noting that black spruce 
initially colonized interior Alaska and eventually replaced preceding 
deciduous woodland during the early-to mid-Holocene when FRIs 
were longer because conditions were cooler and wetter (Higuera 
et al., 2009). This palaeoecological context highlights how feedbacks 
that link deciduous and spruce forest to environmental drivers, like 
climate and fire, reinforce each as resilient alternate states.

The capacity of Alaskan aspen and birch trees to resprout may 
decline faster as they age than in other portions of their ranges. In 
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the absence of fire, resprouting is rare in mature aspen forest across 
interior Alaska (Alexander & Mack, 2017). However, aspen stands in 
Yellowstone National Park have persisted for millennia through asex-
ual reproduction, even without burning (Romme, Turner, Wallace, 
& Walker,  1995). Exploring the environmental and genetic under-
pinnings of intraspecific variation in resprouting across species' 
distributions may elucidate how local populations will fare under 
21st-century climate and fire. Chronic moose browsing further lim-
ited deciduous dominance over spruce when FRIs were long and seed 
source was distant. Compounded consequences of disturbance and 
browsing remain an underappreciated determinant of high-latitude 
forest structure and function (Conway & Johnstone, 2017; Schmitz 
et al., 2014).

We also expected transitions from deciduous forest to nonforest 
might be more likely in simulations forced with hotter-drier future 
climate scenarios because aspen, birch and black spruce are already 
stressed by drought during some growing seasons (Johnstone, 
McIntire, Pedersen, King, & Pisaric,  2010; Trugman et  al.,  2018; 
Walker, Mack, & Johnstone, 2016). In our study, soil moisture influ-
enced vegetation outcomes when FRIs were short, but not when 
FRIs were long. Following short-interval fire, conversion to non-
forest was 55% more common in the late 21st century, compared 
with the contemporary climate period, if the model was forced with 
the warmest and driest GCM (IPSL-CM5A-LR). Drought-induced re-
ductions in seedling density have also been documented following 
short-interval fires in boreal forest of Alberta (Whitman et al., 2019). 
While moisture stress was only modestly influential in this study, 
tree seedling establishment in a warmer-drier future will almost cer-
tainly be a resilience lynchpin of forest recovery from disturbance 
globally (Clark et al., 2016; Davis et al., 2019; Hansen & Turner, 2019; 
Martínez-Vilalta & Lloret, 2016). The interactive effects of changing 
disturbance regimes and climate on tree seedling establishment war-
rant further investigation (Hansen et al., 2018).

4.2 | Future stand composition and feedbacks in the 
Alaskan boreal forest

Deciduous forest persisted in simulations under a wide range of 
plausible future climate and fire conditions across interior Alaska. 
However, conversion to other vegetation types was possible, and 
how 21st-century climate and fire trajectories will actually play 
out remains poorly resolved (Balshi et  al.,  2009; Kitzberger, Falk, 
Westerling, & Swetnam, 2017; Mann et al., 2012). Most GCMs project 
strong warming-induced declines in soil moisture (Cook et al., 2020). 
In conjunction with more lightning (Veraverbeke et al., 2017), drying 
may cause continued increases in fire frequency, size and severity 
(Flannigan et al., 2016). Yet, some GCMs project sufficient increases 
in precipitation to offset expected warming (Dufresne et al., 2013; 
Gent et al., 2011; Yukimoto et al., 2012). Thus, it is plausible that fuel 
moisture will increase in the future, reducing fire activity.

Whether and how vegetation feeds back to further alter fire 
trajectories is another key uncertainty. Deciduous forest is less 

flammable than black spruce in interior Alaska, often burning only 
when summer fire weather is extreme (Barrett et al., 2016) or during 
spring and fall before and after leaf-out (Alexander,  2010). When 
fire does occur in deciduous forest, it usually burns at lower severity 
than spruce (Epting & Verbyla, 2005), which we did not consider in 
this study. Thus, differences in fire behavior and effects may reduce 
subsequent burned area regionally as deciduous forest increases in 
prevalence (Johnstone, Rupp, Olson, & Verbyla, 2011).

If fire activity does increase, our results indicate that deciduous 
forest expansion will likely continue, consistent with results from 
other modelling studies (Euskirchen et al., 2016; Foster et al., 2019; 
Johnstone et  al.,  2011; Mekonnen, Riley, Randerson, Grant, & 
Rogers,  2019). This could increase landscape heterogeneity, with 
upland positions becoming more deciduous dominated and lowland 
sites remaining black spruce forest, particularly where permafrost 
persists. Expanding deciduous forest will drive biophysical feed-
backs to regional climate (Chapin et  al.,  2000). Latent heat fluxes 
and albedo are higher in deciduous forest than spruce forest, caus-
ing a negative forcing on regional temperature (Baldocchi, Kelliher, 
Black, & Jarvis, 2000; Randerson et al., 2006; Rogers, Randerson, 
& Bonan, 2013). While other studies have quantified these climate 
feedbacks (e.g. Mann et  al.,  2012), they have not resolved stand 
composition beyond deciduous and spruce plant functional types. 
We found that spruce trees were often widespread in the under-
storey of deciduous-dominated stands, and some deciduous stands 
(~15%) transitioned to mixed forest. By not accounting for mixed 
species composition, past modelling studies probably overestimated 
the net cooling effect of expanding deciduous forest. Further, the 
presence of spruce in deciduous stands may increase flammability, 
counteracting the negative feedback of deciduous forest on subse-
quent burned area.

4.3 | Gaining mechanistic insights across the North 
American boreal biome

Just as in interior Alaska, warming and drying have caused fire ac-
tivity to increase across the North American boreal biome (Balshi 
et  al.,  2009; Kitzberger et  al.,  2017; Krawchuk, Cumming, & 
Flannigan, 2009; Wotton, Flannigan, & Marshall, 2017). Aspen and 
birch are also replacing black spruce after severe fires, and the fate 
of postfire deciduous forest will almost certainly be determined 
by similar abiotic and biotic drivers to those studied here. In other 
parts of the North American boreal biome, lodgepole pine and jack 
pine trees are now becoming dominant over black spruce after fire 
(Jean, Pinno, & Nielsen,  2020; Johnstone & Chapin,  2003; Searle 
& Chen,  2017; Whitman, Parisien, Thompson, & Flannigan,  2018; 
Whitman et  al.,  2019). We must evaluate whether and how feed-
backs will form that determine the long-term fate of these emerg-
ing vegetation types. Factorial experiments with individual-based 
simulation models, such as the one conducted here, show promise 
for determining plausible outcomes across a wide range of potential 
future conditions in the North American boreal biome.
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