Skip to main content

When bigger is better

As the ocean’s stocks of fishes have been depleted under existing policy, some dramatic new changes are needed.

william schlesinger
President Emeritus, Biogeochemist

By many accounts, humans have dramatically reduced the number of fish in the sea. About 15 years ago, Myers and Worm estimated that global fish stocks of the most desirable predatory fishes, like red snapper and swordfish, were now at only 10% of the levels of the preindustrial era.

Recreational fishers can win a local tournament with a fish that is only a fraction of the size that it took to win several decades ago. And, the best restaurants serve fish that were considered trash fish a century ago.

All this constitutes what Daniel Pauly calls “fishing down” aquatic food webs. We must be happy with fewer fish, smaller fish, and less desirable fish than 100 years ago.

With the exception of the lobster fishery, most fishing regulations suggest that we throw back the small ones, with the idea that they will grow up to larger, more desirable fishes. This is at odds with recent data showing that the reproductive output of fishes increases disproportionately with body size.

Big mothers put out many more eggs than their smaller daughters and granddaughters. For American cod, one large female has the reproductive output of 37 smaller females, who collectively will weigh 2.5 times as much. We should be throwing back the large fish as breeders and keeping the smaller individuals to eat.

This would represent a dramatic change in most current policies designed to protect and achieve sustainable levels for fisheries. A policy of throwing back the large fish might not be easy to implement, when tradition has promoted using nets with openings designed to let the small fish pass through. And small fish are less pleasing to the recreational angler.

Nevertheless, as the ocean’s stocks of fishes have been depleted under existing policy, some dramatic new changes are needed.

These changes in policy are made more critical by observations that most marine fishes are likely to have lower reproductive output and success in a warmer climate, already manifest in warming ocean temperatures recorded by the Navy.

When the world’s rising human population demands more food from the sea, we must take drastic steps to ensure the sustainability of the marine ecosystem for future generations.

References

Barneche, D.R., et al. 2018. Fish reproductive-energy output increases disproportionately with body size. Science 360: 642-645.

Frank, K.T., et al. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308: 1621-1623.

Free, C.M., et al. 2019. Impacts of historical warming on marine fisheries production. Science 363: 979-983.

Myers, R.A. and B. Worm. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423: 280-283.

Pauly, D., et al. 2000. Fishing down aquatic food webs. American Scientist 88: 46-51.

Shackell, N., K. Frank, J. Fisher, B. Petrie and W. Leggett. 2009. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proceedings of the Royal Society B: Biological Sciences 277: 1353-1360. doi: 10.1098/rspb.2009.1020

william schlesinger
President Emeritus, Biogeochemist

William Schlesinger is active in communicating science to policy makers and media. He has testified about environmental issues in Congress and in state houses, and has been featured in media including NOVA, the Weather Channel, Discover, National Geographic, and the New York Times.

He discusses a range of environmental issues in his weekly blog, Translational Ecology.

More on this topic